Local limit theorems in relatively hyperbolic groups I: rough estimates

نویسندگان

چکیده

Abstract This is the first of a series two papers dealing with local limit theorems in relatively hyperbolic groups. In this paper, we prove rough estimates for Green function. Along way, introduce notion relative automaticity which will be useful both and show that groups are automatic. We also define spectral positive recurrence random walks on then use our function to $p_n\asymp R^{-n}n^{-3/2}$ spectrally positive-recurrent walks, where $p_n$ probability going back origin at time n R inverse radius walk.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limit Groups for Relatively Hyperbolic Groups, I: the Basic Tools

We begin the investigation of Γ-limit groups, where Γ is a torsion-free group which is hyperbolic relative to a collection of free abelian subgroups. Using the results of [16], we adapt the results from [22]. Specifically, given a finitely generated group G, and a sequence of pairwise non-conjugate homomorphisms {hn : G → Γ}, we extract an R-tree with a nontrivial isometric G-action. We then pr...

متن کامل

Limit Groups for Relatively Hyperbolic

We begin the investigation of Γ-limit groups, where Γ is a torsion-free group which is hyperbolic relative to a collection of free abelian subgroups. Using the results of [16], we adapt the results from [21] and [22] to this context. Specifically, given a finitely generated group G, and a sequence of pairwise non-conjugate homomorphisms {hn : G → Γ}, we extract anR-tree with a nontrivial isomet...

متن کامل

Limit groups for relatively hyperbolic groups II: Makanin–Razborov diagrams

Let Γ be a torsion-free group which is hyperbolic relative to a collection of free abelian subgroups. We construct Makanin–Razborov diagrams for Γ. We also prove that every system of equations over Γ is equivalent to a finite subsystem, and a number of structural results about Γ–limit groups. AMS Classification numbers Primary: 20F65 Secondary: 20F67, 20E08, 57M07

متن کامل

Small cancellations over relatively hyperbolic groups and embedding theorems

In this paper we generalize the small cancellation theory over hyperbolic groups developed by Olshanskii to the case of relatively hyperbolic groups. This allows us to construct infinite finitely generated groups with exactly n conjugacy classes for every n ≥ 2. In particular, we give the affirmative answer to the well–known question of the existence of a finitely generated group G other than Z...

متن کامل

Relatively hyperbolic Groups

In this paper we develop some of the foundations of the theory of relatively hyperbolic groups as originally formulated by Gromov. We prove the equivalence of two definitions of this notion. One is essentially that of a group admitting a properly discontinuous geometrically finite action on a proper hyperbolic space, that is, such that every limit point is either a conical limit point or a boun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ergodic Theory and Dynamical Systems

سال: 2021

ISSN: ['0143-3857', '1469-4417']

DOI: https://doi.org/10.1017/etds.2021.7