Local limit theorems in relatively hyperbolic groups I: rough estimates
نویسندگان
چکیده
Abstract This is the first of a series two papers dealing with local limit theorems in relatively hyperbolic groups. In this paper, we prove rough estimates for Green function. Along way, introduce notion relative automaticity which will be useful both and show that groups are automatic. We also define spectral positive recurrence random walks on then use our function to $p_n\asymp R^{-n}n^{-3/2}$ spectrally positive-recurrent walks, where $p_n$ probability going back origin at time n R inverse radius walk.
منابع مشابه
Limit Groups for Relatively Hyperbolic Groups, I: the Basic Tools
We begin the investigation of Γ-limit groups, where Γ is a torsion-free group which is hyperbolic relative to a collection of free abelian subgroups. Using the results of [16], we adapt the results from [22]. Specifically, given a finitely generated group G, and a sequence of pairwise non-conjugate homomorphisms {hn : G → Γ}, we extract an R-tree with a nontrivial isometric G-action. We then pr...
متن کاملLimit Groups for Relatively Hyperbolic
We begin the investigation of Γ-limit groups, where Γ is a torsion-free group which is hyperbolic relative to a collection of free abelian subgroups. Using the results of [16], we adapt the results from [21] and [22] to this context. Specifically, given a finitely generated group G, and a sequence of pairwise non-conjugate homomorphisms {hn : G → Γ}, we extract anR-tree with a nontrivial isomet...
متن کاملLimit groups for relatively hyperbolic groups II: Makanin–Razborov diagrams
Let Γ be a torsion-free group which is hyperbolic relative to a collection of free abelian subgroups. We construct Makanin–Razborov diagrams for Γ. We also prove that every system of equations over Γ is equivalent to a finite subsystem, and a number of structural results about Γ–limit groups. AMS Classification numbers Primary: 20F65 Secondary: 20F67, 20E08, 57M07
متن کاملSmall cancellations over relatively hyperbolic groups and embedding theorems
In this paper we generalize the small cancellation theory over hyperbolic groups developed by Olshanskii to the case of relatively hyperbolic groups. This allows us to construct infinite finitely generated groups with exactly n conjugacy classes for every n ≥ 2. In particular, we give the affirmative answer to the well–known question of the existence of a finitely generated group G other than Z...
متن کاملRelatively hyperbolic Groups
In this paper we develop some of the foundations of the theory of relatively hyperbolic groups as originally formulated by Gromov. We prove the equivalence of two definitions of this notion. One is essentially that of a group admitting a properly discontinuous geometrically finite action on a proper hyperbolic space, that is, such that every limit point is either a conical limit point or a boun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ergodic Theory and Dynamical Systems
سال: 2021
ISSN: ['0143-3857', '1469-4417']
DOI: https://doi.org/10.1017/etds.2021.7